| Lesson Code | Course Name | Class | Credit | Lesson Time | Weekly Lesson Hours (Theoretical) | Weekly Lesson Hours (Practice) | Weekly Class Hours (Laboratory) |
|---|---|---|---|---|---|---|---|
| AKZM5213 | Modern problems of Applied Mathematics | Бірінші курс | 5 | 150 | 1 | 2 |
The purpose of the discipline is to conduct research on basic algebraic structures: introduces general concepts of groups, rings, modules, algebraic structure, substructure, homomorphism and isomorphism. In the process of studying the discipline, undergraduates develop: skills in solving algebraic problems, working in a group, reasoned defense of the correctness of solving a problem, critical assessment of their activities, group activities and the ability to self-education and self-development.
Team work, critical thinking, brainstorming, developmental learning method, group project work method, problem method, mini research method, professional skills improvement method, exchange of views, discussion method.
| 1 | Analyzes the results of research in this area, demonstrating deep theoretical knowledge in the field of modern algebra and geometry (LO9). |
| Haftalık Konu | Evaluation Method | |
|---|---|---|
| 1 | Binary trick Binary trick definition The neutral (neutral) and inverse element are concepts.Features. | Ауызша және жазбаша |
| 2 | Algebraic systems. In the set of T a definite trick Isomorphism. | Ауызша және жазбаша |
| 3 | Defining a group Additive and multiplicative groups. | Ауызша және жазбаша |
| 4 | Abel's Group Group Properties. | Ауызша және жазбаша |
| 5 | Definition of the ring. Zero divisors. | Ауызша және жазбаша |
| 6 | Field definition. Field properties. Examples of fields. | Ауызша және жазбаша |
| 7 | The inner ring and the inner field. Definition of the inner ring. Definition of the underground. | Ауызша және жазбаша |
| 8 | A ring with a single element. Multiples of elements and degrees of an element. | Ауызша және жазбаша |
| 9 | Transformations and images. | Ауызша және жазбаша |
| 10 | Homomorphism of groups. Homomorphism of rings. | Ауызша және жазбаша |
| 11 | Areas that are uniquely classified into multipliers. | Ауызша және жазбаша |
| 12 | Euclidean regions Definition of the Euclidean zone. Properties of the Euclidean zone. | Ауызша және жазбаша |
| 13 | The polynomial ring The coefficients of the polynomial and the coefficient of the head.. | Ауызша және жазбаша |
| 14 | Polynomials (polynomials) with one variable. | Ауызша және жазбаша |
| 15 | The division field and the complete division ring. The division ring with respect to multiplicative systems. | Ауызша және жазбаша |
| PÇ1 | PÇ2 | PÇ3 | PÇ4 | PÇ5 | PÇ6 | PÇ7 | PÇ8 | PÇ9 | PÇ10 |
|---|
| Textbook / Material / Recommended Resources | ||
|---|---|---|
| 1 | Pıter Dj.Kameron. Algebraǵa kırispe. Almaty, 2013. | |
| 2 | Red.Iý. M. Smırnova. Analıtıkalyq geometrıa jáne syzyqtyq algebra boıynsha esepter jınaǵy. Oqý quraly. - Máskeý, 2016j. | |
| 3 | M. A. Sultanov, Ǵ.B. Baqanov, A. S. Berdyshev. Algebra jáne geometrıadanesepter Shyǵys. / Oqý quraly. Shymkent 2020j. | |
| 4 | E. M. Karchevskıı, M. M. Karchevskıı. Syzyqtyq algebra jáne Analıtıkalyq geometrıa boıynsha dárister. Oqýlyq.– Sankt-Peterbýrg: Lan, 2018 j. | |
| 5 | B .h. Týrmetov , B. T. Tórebek Maple úısin matematıka pánderi esepterin sheshýde qoldan. –Túrkistan: Turan, 2012 |